

2020 Marking Scheme

Grade Obtained	Α	В	С	D	N/A
2020	40.7%	25.5%	22.1%	7.8%	3.9%
2021	43.4%	19.9%	18.2%	10.4%	8.1%

This marking scheme is for the intended Higher Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason.

Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same.

The grades awarded in 2020 and 2021 are in the table above.

	2020 Higher Chemistry Marking Scheme										
MC Qu	Answer	Reasoning									
1	Α	☑A Filtration is the prod ☑B Distillation is the pro ☑C Evaporation is the pr ☑D Collection over wate	ocess where chem rocess to separate	icals are separat a substance fro	ed due to differ m the solvent it	rent boiling points is dissolved in					
2	D	The size of atoms decree number of protons/incre attraction for the outer	ased nuclear char	ge. The increased	d nuclear charge	has a greater					
3	В	☑B London dispersion fo ☑C No covalent bonds ar	$\blacksquare A$ CO_2 is non-polar due to the spatial arrangement of the atoms within the molecule $\blacksquare B$ London dispersion forces are broken as solid CO_2 is changed into gaseous CO_2 $\blacksquare C$ No covalent bonds are broken as it is still CO_2 at the end of the change of state $\blacksquare D$ CO_2 is non-polar due to the spatial arrangement of atoms and has no permanent dipoles								
4	Α	☑B Elements with high e ☑C Elements with low el	☑A Elements with high electronegativities tend to gain electrons and are reduced ☑B Elements with high electronegativities tend to reduce so are oxidising agents ☑C Elements with low electronegativities e.g. metals tend to lose electrons ☑D Elements with low electronegativities tend to oxidise themselves so are reducing agents								
5	С	 ☒A X must be less viscous as the metal ball is falling through it faster ☒B Y must have the strongest van der Waals forces as the ball bearing is travelling slower ☒C X is less viscous and Y must have the stronger van der Waals forces ☒D X must be less viscous as the metal ball is falling through it faster 									
6	С		nergy Be(g) — energy Be ⁺ (g) — Be(g) —	_		J mol ⁻¹					
7	D	 ■A 2-methylpropanoic a ■B propyl methanoate C ■C 2-ethylbutanoic acid ☑D ethyl propanoate C5 	$_4\text{H}_8\text{O}_2$ is not an iso $_6\text{H}_{12}\text{O}_2$ is not an	omer of pentanoi isomer of pentar	c acid C5H10O2 noic acid C5H10O						
8	В	— OH	O - C - OH	O -C-	-O	O H					
		Alcohol Number	0	Q	6	4					
	_	Number of carbons attached to carbon with -OH group	1	2	1	1					
9	В	Type of Alcohol	Primary	Secondary	Tertiary	Primary					
		Product of oxidation with acidified potassium dichromate	Carboxylic acid	Ketone	[No Oxidation]	<u> </u>					
10	С	2-methylbutanal is an aldehyde which would reduce to the primary alcohol 2-methylbutan-1-ol. 2-methylbutanal $C_5H_{10}O$ $C_5H_{10}O$ $C_5H_{11}OH$ $C_5H_{10}O$ $C_5H_{11}OH$ C									
11	С	☑B methyl ethanoate wo ☑C propanoic acid C2H5C	ould hydrolyse and OOH would react	form the salt so to form the salt	dium ethanoate sodium propano	= 86g = 88g \blacksquare A ethyl methanoate would hydrolyse and form the salt sodium methanoate (and ethanol) \blacksquare B methyl ethanoate would hydrolyse and form the salt sodium ethanoate (and methanol) \blacksquare C propanoic acid C_2H_5COOH would react to form the salt sodium propanoate \blacksquare D butanoic acid C_3H_7COOH would react to form the salt sodium butanoate					

	T						
10	_	☑A proteins are not hydrolysed into amino acids during denaturing ☑B hydrogen bonds are broken in the denaturing step as the protein changes shape					
12	В	☑ C proteins are not hydrolysed into amino acids during denaturing					
		water is removed in the condensation reaction to turn amino acids into proteins					
	_	☑A fats are more saturated than oils as oils have more C=C double bonds than fats ☑B fats are more saturated than oils as oils have more C=C double bonds than fats					
13	C	☑C fats are more saturated than oils and have higher melting points than oils					
		☑D fats have higher melting points than oil as fats are solid at room temperature					
		🗷 A antioxidants are easily oxidised themselves so act as electron donors					
14	В	☑B antioxidants are easily oxidised to stop oxidation of food so do not act as oxidising agent ☑C antioxidants are easily oxidised themselves so act as reducing agents					
		■ D antioxidants act as free radical scavengers and react with free radicals					
		☑A Termination Step with free radicals before the arrow only					
15	D	■ B Initiation Step with free radicals after the arrow only					
15		EC Termination Step with free radicals before the arrow only					
		 ☑D Propagation Step with free radicals on both sides of the arrow. ☑A small rise in temperature decreases the time and gives a large increase in reaction rate 					
1.4	A	☑B activation Energy does not change with a change in temperature					
16	Α	▼ C Kelvin temperature scale must be used to investigate doubling the temperature					
		☑D Increase in temperature is decreasing the time for reaction ∴ increasing the rate					
17	D	rate = $\frac{1}{\text{time}}$ = $\frac{1}{5s}$ = 0.2 s ⁻¹ relative rate =0.20s ⁻¹ gives concentration = 0.96 mol l ⁻¹					
		■A high activation energy barrier too high for the reaction to take place at room temp					
18	В	☑B low activation energy barrier and the reaction more likely to happen at room temp ☑C this enthalpy diagram is endothermic as the products are higher than the reactants					
		☑D this enthalpy diagram is endothermic as the products are higher than the reactants					
	_	 ■A 3 volumes of gas reactants becomes 2 volumes of gas products ∴ not halving of reactants ■B 1 volume of gas reactants becomes 1 volume of gas products ∴ not halving of reactants 					
19	C	 ☑C 4 volumes of gas reactants becomes 2 volumes of gas products : halving of reactant vol 					
		■D 1 volume of gas reactants becomes 2 volumes of gas products :. not halving of reactants					
20	_	If 80% Yield produces 0.8mol of ester product then 100% Yield would be 1.0mol of ester $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$					
20	D	1.0mol 1.0mol 1.0mol 1.0mol					
		✓A decrease in temperature increases the yield by more forward reaction and decrease in					
21	A	temperature favours the exothermic reaction : forward reaction is exothermic					
21	Α	☑B Equilibrium is achieved at 250°C and 300 atm but reverse reaction is still happening ☑C The 500°C line is always below the 250°C line so increasing temperature lowers yield					
		☑D There is increase in product yield when the pressure increased after 200 atmospheres					
		no. of mol H_2SO_4 = volume x concentration = 0.05 litres x 0.2 mol l^{-1} = 0.01 mol					
22	В	$2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O$					
		2mol 1mol 0.02mol 0.01mol					
		☑A P is closer to base line than S ∴ P must be more polar than S					
23	C	☑B Q is further from the base line than P : Q must be smaller than P					
		 ✓ C R is closer to base line than P ∴ R must be more polar than P ☑ D S is closer to base line than Q ∴ S must be larger than Q 					
24	Α	Sample 1 is ignored as rough titre Sample 3 is ignored as beyond $0.2cm^3$ limit for concordance Average = $\frac{20.3 + 20.4}{2} = 20.35cm^3$					
		Increasing the pressure favours the forward pressure-reducing reaction.					
	_	The mixture becomes paler as NO2 turns into N2O4 \therefore NO2 is brown.					
25	Α	Increasing the temperature makes mixture darker brown (i.e. more NO ₂). The reverse position must be endethermic if it is favoured by an increase in temperature.					
		The reverse reaction must be endothermic if it is favoured by an increase in temperature. : Forward reaction is exothermic					
	1						

В	 ☑A CCl₄ is non-polar due to 3D arrangement of Cl atoms around central C atom ☑B NH₃is a polar molecule due to the electronegativity difference between atoms ☑C CO₂ is non-polar due to linear arrangement of O atoms around central C atom ☑D CH₄ is non-polar as it is a hydrocarbon. All hydrocarbons are non-polar. 							
A	\square A CO reduces metal ores to metals. CO acting as Reducing Agent \square B MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ \rightarrow Mn ²⁺ + 4H ₂ O is reduction \therefore MnO ₄ ⁻ acting as oxidising agent \square C H ₂ O ₂ + 2H ⁺ + 2e ⁻ \rightarrow 2H ₂ O is reduction \therefore H ₂ O ₂ acting as oxidising agent \square D Cr ₂ O ₇ ²⁻ +14H ⁺ +5e ⁻ \rightarrow 2Cr ³⁺ +7H ₂ O is reduction \therefore Cr ₂ O ₇ ²⁻ acting as oxidising agent							
C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
В	☑A Primary Alcohol: 1 carbon directly attached to carbon with the -OH group ☑B Tertiary Alcohol: 3 carbons directly attached to carbon with the -OH group ☑C Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group ☑D Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group							
A	☑A Amino acid with -CH ₃ side group has been removed during partial hydrolysis ☑B CH-CH ₃ group should be on left of -CH ₂ - group in hydrolysis fragment ☑C -CH ₂ - group has been removed but two groups are rejoined ☑D CH-CH(CH ₃) ₂ group should be on right of -CH ₂ - group in hydrolysis fragment							
D	$\blacksquare A$ pentyl ethanoate has a total of 7 carbons \therefore cannot have formula $C_6H_{12}O_2$ $\blacksquare B$ hexan-2-one has formula $C_6H_{12}O$ so only has 1 oxygen atom not 2 oxygen atoms. $\blacksquare C$ 3-methylpentan-2-ol has formula $C_6H_{13}OH$ so only has 1 oxygen atom not 2. $\blacksquare D$ hexanoic acid has formula $C_6H_{12}O_2$							
В	Primary Alcohols Hot copper(II) oxide Acidified dichromate solution Secondary Alcohol Hot copper(II) oxide Acidified dichromate solution Ketone Hot copper(II) oxide Acidified dichromate solution Benedict's or Fehling's solution Tollen's Reagent A pentan-1-ol is a primary alcohol would oxidise with hot copper(II) oxide to pentanal which would further oxidise with Fehling's solution to form pentanoic acid B pentan-2-ol is a secondary alcohol would oxidise with hot copper(II) oxide to form pentan-2-one which does not react with Fehling's solution. C pentan-3-one is a ketone and does not oxidise with hot copper(II) oxide.							
D	 ☑ D pentanoic acid is a carboxylic acid and does not oxidise with hot copper(II) oxide. ☑ A molecule has five carbons but not in one continuous chain of five carbons ☑ B longest chain containing functional group has three carbons : ends in propanoic acid ☑ C two separate methyl -CH₃ groups attached to C₂ so is dimethyl not a ethyl -C₂H₅ group. ☑ D 2x methyl -CH₃ groups attached to C₂ of three carbon main chain with -COOH group 							
D	 ■A Molecule A has 10 carbons and is derived from two C₅ isoprene units joining together ■B Molecule B has 10 carbons and is derived from two C₅ isoprene units joining together ■C Molecule C has 10 carbons and is derived from two C₅ isoprene units joining together ■D Molecule D has 9 carbons so cannot be made by two C₅ isoprene units joining together. 							

	C	 ☒A methanol (primary alcohol) oxidises to methanoic acid (carboxylic acid) ☒B propanal (aldehyde) oxidises to propanoic acid (carboxylic acid) ☒C butan-2-one (ketone) reduces to become butan-2-ol (secondary alcohol) ☒D propan-2-ol (secondary alcohol) oxidises to propanone (ketone) 						
	В	 ☑A Primary Amine: 1 carbon directly bonded to nitrogen atom ☑B Secondary Amine: 2 carbons directly bonded to nitrogen atom ☑C Tertiary Amine: 3 carbons directly bonded to nitrogen atom ☑D Primary Amine: 1 carbon directly bonded to nitrogen atom 						
	D	Formula of Calcium Phosphate = $Ca_3(PO_4)_2$ 1mol of $Ca_3(PO_4)_2$ contains 3mol of Ca^{2+} ions and 2 mol of PO_4^{3-} ions.						
	Α	gfm CH ₄ = 16g ∴ no. of mol = $^{mass}/_{gfm} = ^{4}/_{16} = 0.25$ mol ☑ A gfm He = 4g ∴ no. of mol = $^{mass}/_{gfm} = ^{1}/_{4} = 0.25$ mol ☑ B gfm H ₂ = 2g ∴ no. of mol = $^{mass}/_{gfm} = ^{1}/_{2} = 0.5$ mol ☑ C gfm N ₂ = 28g ∴ no. of mol = $^{mass}/_{gfm} = ^{3.5}/_{28} = 0.125$ mol ☑ D gfm Cl ₂ = 71g ∴ no. of mol = $^{mass}/_{gfm} = ^{35.5}/_{71} = 0.5$ mol						
	С	MgCO ₃ + 2HNO ₃ → Mg(NO ₃) ₂ + H ₂ O + CO ₂ 1mol 2mol 1mol 1mol 1mol 0.05mol 0.03mol 0						
	D	$\blacksquare A$ O atom in C=O bonds have δ - charges so will not be attracted to each other $\blacksquare B$ C-H bond is non-polar due to similar electronegativity so no dipole $\blacksquare C$ C-H bonds are non-polar due to similar electronegativity so no dipoles $\blacksquare D$ C in C=O bond has δ + charge and is attracted to δ - charge on other C=O bond						
	В	atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{(4 \times 55.8)}{(2 \times 159.6) + (3 \times 12)} \times 100 = \frac{223.2}{319.2 + 36} \times 100 = 62.8\%$						
	В	$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$ $1\text{mol} \qquad 5\text{mol} \qquad 3\text{mol} \qquad 4\text{mol}$ $1\text{vol} \qquad 5\text{vol} \qquad 3\text{vol} \qquad \text{negligible volume}$ $100\text{cm}^3 \qquad 500\text{cm}^3 \qquad 300\text{cm}^3 \qquad -$ $(+100\text{cm}^3 O_2 \text{ leftover})$ $\text{Total Volume at end of reaction} = 300\text{cm}^3 CO_2 + 100\text{cm}^3 \text{ leftover } O_2 = 400\text{cm}^3$						
	В	Step 1: 60% of $100\% = \frac{60}{100} \times 100\% = 60\%$ Step 2: 90% of $60\% = \frac{90}{100} \times 60\% = 54\%$						
20	C	☑A Volume of gas must be reduced as volume of acid is reduced (zinc in excess) ☑B Initial Rate of reaction must be increased as lumps replaced by powder ☑C Initial rate must be greater and final volume of gas must be reduced ☑D Initial Rate of reaction must be increased as lumps replaced by powder						
21	A							

		$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$ $\Delta H_2 = \Delta H_1 - \Delta H_3 - \Delta H_4$ $b = a - c - d$ $AH_3 = c$ $\Delta H_4 = d$ $AH_4 = d$
22	D	 A Higher Activation Energy will make a successful collision less likely to happen. B The higher the kinetic energy of reactants the more like the collision will have sufficient energy to react. C Higher the concentration the higher the likelihood of a successful collision Whether a reaction is exothermic or endothermic has no bearing on the reaction rate.
23	С	 ☒A no change in pressure from reactants to products ∴ lowering pressure has no effect ☒B lowering pressure favours pressure increasing reaction (reverse reaction) ☒C lowering pressure favours pressure increasing reaction (forward reaction) ☒D lowering pressure favours pressure increasing reaction (reverse reaction)
24	A	☑A Increasing the temperature moves the curve to the right. ☑B Increasing the temperature moves the curve to the right not the left. ☑C Ea does not change when temperature is changed ☑D Area under curve should be same as same number of particles.
25	D	H_3C $C = C$ $C + O = C$ $C = C$ C

2020 Higher Chemistry Marking Scheme											
Long Qu	Answer	Reasoning									
1a(i)	Increase in atomic number gives increase in electronegativity	As you go across a period, the electronegativity increases as the electrons within a bond are more attracted to the nuclei at either end of the bond. The bonded electrons are closer to each nucleus as size of atoms decrease as you cross a period.									
1 a(ii)	They don't form covalent bonds	The noble g This means	_	•				•	•		
1a(iii)	One answer from:		-		ases so les electrons	s Co				s so less at red electro	
1b(i)	2.8 ± 0.05	Problem S	iolving:	Seled	cting inf	ormo	ation				
1b(ii)	Cross at (2.1,1.8)	Problem S	olving:	Selec	cting inf	ormo	ation				
		Write down and valency	,		ss-Over arr				cal formul necessary	ion and	harges to each multiple ions ed brackets
1b(iii)A	(Li ⁺) ₂ S ²⁻	Li	5	L	i S	5		Liz	S	(Li	†) ₂ 5 ²⁻
		1	2	1	. 2	2					
1b(iii)B	Due to changes to the data booklet in 2021, the answers to this question no longer come to 1.5	Answer Elements Electronegativity Difference	Carbon Electronegati = 2.6		Fluorine ctronegativity = 4.0	Electron	Ifur negativity 2.6	Fluo Electrone = 4	egativity E	Boron lectronegativity = 2.0	Oxygen Electronegativity = 3.4
1c	Polar (covalent)	The covalent difference wi part in hydro	ithin the b	ond is	1.8. The po	lar bo				-	rity polar it takes
2a(i)	graphite	There are	three fo	rms o	of the el	emen e is a n	nolecula	r form			nd graphite.
2a(ii)	Covalent bond London dispersion forces	Diamond is a undergoes s Fullerene is fullerene un	ublimatio a non-po	n into lar mo	a gas. lecule and	l Lond	lon disp				
2a(iii)	12	1 Br2 mole		1mol	+ 12B 12mo l across	l			1mol		
2b	45.8	atom eco	onomy = n	nass of otal ma	useful proc ss of react	ucts ants	×100 = -	(1×159	(2x55.8) 9.6) + (3x	×100	= 45.8%
2c	+250 kJ mol ⁻¹	0 2 3 4 2 8 8	-1 -3 -3	l ₂ - -l ₄ -	$ \begin{array}{ccc} + & \frac{1}{2}O_2 \\ + & 2O_2 \end{array} $ $ \begin{array}{ccc} CO_2 \\ 3H_2O \\ + & 2O_2 \end{array} $	$\begin{array}{ccc} \rightarrow & \\ \rightarrow & \end{array}$	H ₂ O CO ₂ CO 3H ₂ CO ₂	+ + + +	2H ₂ O ¹ / ₂ O ₂ 1 ¹ / ₂ O ₂ 2H ₂ O	ΔH=-283 k ΔH=-286 k ΔH=-891 k ΔH=+283 k ΔH=+858 k ΔH=-891 k	J mol ⁻¹ J mol ⁻¹ J mol ⁻¹ J mol ⁻¹ J mol ⁻¹
		0'+0)+ 6 Cł	1 4 -	+ H ₂ O	\rightarrow	60	+	3H2	∆H=+250 l	KJ mol ⁻

		3 mark answer	2 mark answer	1 mark answer
3	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
4a				
4b				
4c(i)				
4c(ii)				
4c(iii)				
4d(i)				
4d(ii)				
4d(iii)A				
4d(iii)B				
4e(i)				
4e(ii)A				
4e(ii)B				
5a				
5b(i)				
5b(ii)				
5c(i)				
5c(ii)				
6a				
6b(i)				
6b(ii)				
6b(iii)				
6b(iv) <i>A</i>				
6b(iv)B				
6c(i)				
6c(ii)				
7α				
7b				
7c(i)				
7c(ii)				
7d				
7e(i)				
7e(ii)				
8a(i)				
8a(ii)				
8b(i)				
8b(ii)				
8c(i)A				
8c(i)B				

8c(ii)				
8c(iii)				
9a(i)				
9α(ii)				
9a(iii)				
9b				
9c(i)				
9c(ii)				
9d(i)				
9d(ii)				
9d(iii)				
10	Open Question Answer to Include:	understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a the	2 mark answer emonstrates a reasonable inderstanding of the chemistry volved, making some ratement(s) which are relevant to the situation, showing that the roblem is understood.	1 mark answer Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
11a(i)				
11a(ii)				
11b(i)				
11b(ii)				
11b(iii)				
12a				
12b				
12c				
1a(ii) Part A	A 0 B 10 C 20 D 30 E 40	For the concentration of thiosumust be kept constant. The totion is 50 cm ³ in each experiment.	•	
1a(ii) Part B	35.1		$\therefore \text{time} = \frac{1}{\text{Rate}} = \frac{1}{0}$	1 .0285 = 35.1s
1a(iii)	12±1	For doubling of rate from 0. Temperature at 0.02s ⁻¹ = 4 Temperature at 0.04s ⁻¹ = 5	14°C Change in temp	perature = 12°C
1b	Sufficient Energy to React And Correct Geometry	1st Mark: sufficient or enough energy 2nd Mark: (Collision me	energy equal to or greater than t activation energy nust occur with) suitable/correct/geor	he minimum/ enough energy to form an activated complex netry/orientation
1c(i)	X at peak on curve	The top of the hill (peak on bonds of the reactants are half formed.		•

1c(ii)	potential energy ((kJ mol ¹)	A catalyst lowers the activation energy without changing the position of the reactants or products. This means that the top of the hill is lowered. The enthalpy change is the same as the positions of the reactants and products are unchanged.					
2a(i)	Increasing number of protons or increasing nuclear charge	Going across a period does not increase the size of an atom as it is the same outer shell which is being filled up. The increased positive charge in the nucleus attracts the outer shell into more as you go across a period.					
2a(ii)	One answer from:	Increased ro	valent adius reases Atom s increas	ses at	More shells so less traction of nucleus for ter electron decreases		
2b(i)	$N^+(g) \rightarrow N^{2+}(g) + e^-$	1 st Ionisation Energy: The removal of c 2 nd Ionisation Energy: The removal of					
2b(ii)	Answer to Include:	The 6th ionisation energy involves removing the 6th electron is removed from 1st Mark: an electron from the shell which is full or electron shell which is inner/					
	1 ^{s†} Mark:	2 nd Mark: The 6th electron is 1		or attrac	ted to/pulled towards the nucleus.		
2c	Al forms Al ³⁺ ion P forms P ³⁻ ion 2 nd Mark: P ³⁻ ion has one more electron shell than Al ³⁺ ion	Phosphorus atoms have electron arrangement of 2,8,5 and form P ³⁻ ions which have electron arrangement of 2,8,8 Aluminium atoms have electron arrangement of 2,8,3 and form Al ³⁺ ions which have electron arrangement of 2,8 Phosphide P ³⁻ ion has one more electron shell than aluminium Al ³⁺ ion.					
2d	Radius Ratio = 0.96 Caesium Chloride Structure	Radius ratio = $\frac{\text{Radius of positive ion}}{\text{Radius of negative ion}} = \frac{135}{140} = 0.96$					
3	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limite understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.			1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
4a(i)	Biological catalyst	An enzyme is a protein which inside living things.	ch acts as a ca	talyst foi	the chemical reactions		
4a(ii)	4.5	Mass of cider = 1.36g/cm³ × 50cm³ = 6 %mass of alcohol = Mass of alcohol Mass of cider		00 = 4.48	%		
4b(i)	Carbon dioxide	Malic acid C4H6O5		tic Acid 3H6O3	+ X + CO ₂		
4b(ii) Part A	0.25	$R_{f} = \frac{\text{Distance moved by substance}}{\text{Distance moved by solvent}} = \frac{4.1}{16.4} = 0.25$					
4b(ii) Part B	Sample 4 or Cider B	Problem Solving: Cider B/S spot at 4.1 indicating all th	•	•			
4c	Propane-1,2,3-triol	H H H H-C-C-C-H OH OH OH glycerol	ropan 3 carbons Single to between to	oonds Fu	,2,3-triol nctional groups a Carbons 1,2,3 3 hydroxyl -OH groups		

4-10		1st Mark: Molecule is polar due to Can form hydrogen bonds due hydroxyl groups to hydroxyl groups						
4d(i)	Answer to include:	2 nd Mark: Solubility increases as more polar hydroxyl groups are added (and increases hydrogen bonding)						
4d(ii)	2-methylbutanoic acid	H H H O						
4d(iii)	2-methylbuta-1,3-diene or isoprene	H ₂ C C—CH H ₃ C CH ₂ 2-methylbuta-1,3-diene						
4e(i)	Carbonyl							
4e(ii)	Ethanoic acid	Primary Aldehyde Carboxylic acid Ethanol Ethanol Ethanol Ethanol						
5a(i)	-694	Bond Breaking Steps Bond Forming Steps 4xC-H bonds 4x 412kJ = 1648kJ 2xC=O bonds 2x 743kJ = 1486kJ 2xO=O bond 2x 498kJ = 996kJ 4xO-H bonds 4x 463kJ = 1852kJ Total bond breaking = 2644kJ Total bond Forming = 3338kJ Enthalpy change = +2644 - 3338 = -694kJ mol ⁻¹ ΔH = ΣBond enthalpies for bonds broken - ΣBond enthalpies for bonds formed ΔH = 2644 - 3338 ΔH = -694 kJ mol ⁻¹						
5 α(ii)	Answer to include:	Mean bond enthalpy is an average energy from a number of compounds. Bond enthalpy relates to only one particular compound or molecule.						
5a(iii)	0.367	no. of moles = $\frac{\text{Volume}}{\text{Molar Volume}}$ = $\frac{0.200 \text{litres}}{24 \text{ litres mol}^{-1}}$ = 0.00833mol $CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_{2}O_{(l)}$ $\stackrel{1 \text{mol}}{0.00833 \text{mol}} \stackrel{2 \text{mol}}{0.00833 \text{mol}}$ 0.00833mol 0.00833mol 0.00833mol 0.00833mol						
5b(i)	Record the mass of burner before and after heating	The before and after masses of the spirit burner (including lid) are needed to calculate the change in mass of the spirit burner and this change in mass is the mass of heptane burned.						
5b(ii)	-3496	Heat Energy = Specific Heat Capacity \times Mass \times Change In Temperature $E_h = c \times m \times \Delta T$ $E_h = 4.18 \text{ kJ kg}^{-1} \circ C^{-1} \times 0.4 \text{kg} \times 23 \circ C$ $E_h = 38.456 \text{ kJ}$ $gfm \text{ Heptane } C_7 \text{H}_{16} = (7 \times 12) + (16 \times 1) = 84 + 16 = 100g$						

		1				
			otane 🗲	→ 38.456kJ		
		1mol heptane = 100g he	отапе ¬	→ 38.456kJ = -3496kJ	•	
		Loss of heat to sur	acundinas		ustion Loss by evaporation	
5b(iii)	One answer from:	Absorption of heat by glo				
	C		oth molecules have identical number of electrons (34) so have			
6a(i)	Same number of	ability to form London			• •	
	electrons or Same	formation of temporary	•		•	
Part A	strength of LDF	between the molecules	mist be	caused by other int	termolecular forces.	
6 - 00		1 st Propan-1-ol has strong			orces in propan-1-ol take more	
6a(i)	Answer to include:	mark: forces than et			ak than those in ethanethiol and intermolecular bonds in	
Part B				nent dipole to permanent		
,	.1 .1 . 1	Alkane: Methane (CH4	Ethane C2H6	Propane C ₃ H ₈	
6 a (ii)	methanethiol	Thiol: Mathanethiol		Ethanethiol C2H5SH		
		1cm³ air ◀	→ 2.7	×10 ⁻⁷ mg		
6a(iii)	11.853mg	1 litre air ◀	→ 2.7	×10 ⁻⁴ mg		
- ()		43900 litres air ◀	▶ 2.7	$1 \times 10^{-4} \text{mg} \times 43900 /_1 =$	11.853mg or 0.0118g	
		Primary Thiol	Se	econdary Thiol	Tertiary Thiol	
	-SH group is attached to	-SH group attached to carbon	ı -SH gr	oup attached to carbon is attached to 2 other	-SH group attached to carbon	
6b(i)	carbon which is attached	which is attached to 0 or 1 other carbons atoms	which	carbon atoms.	which is attached to 3 other carbon atoms.	
00(1)	to 3 other carbons	-SH group attached to carbo	ı -SH gr	oup attached to carbon	-SH group attached to carbon	
		which is attached to 2 hydrogen atoms.	wh	ich is attached to 1 hydrogen atom.	which is attached to no hydrogen atoms.	
6b(ii) Part A	H H SH H—C—C—C—H H CH₃ H	H H - C - C = H CH ₃	H S + C – F H	H - C - H - C - H - C - H	- C - C - H - CH ₃ H	
		2-methylpropene + hydi	ogen sul	lphide → 2	?-methyl-2-propanethiol	
		1mol			1mol	
6b(ii)	41,2	56.0g			90.1g	
Part B	41,4	30.5g			$90.1g \times {}^{30.5}/_{56.0}$	
41 1 5		A		% Viold v Th	= 49.07g	
		$%Yield = \frac{Actual}{Theoretical} \times 100$	∴ Actual	=	$=\frac{84 \times 49.07}{100} = 41.2g$	
		Step		ctants	Products	
	_	Initiation	No free	re Arrow) radicals on	(after Arrow) Free radicals on	
7a(i)	Propagation	Propagation		ree Radicals found on both :	Product Side sides of arrow	
		Termination		adicals on the state of the sta	No free radicals on Product Side	
7	/ 1,	Ultraviolet light can cause			s as energy in the uv light	
7a(ii)	uv/ultraviolet	can cause bonds to split a				

		side. This means there are unpaired electrons which are called free radical. This breaks the plastic down in to smaller chunks that can be digested by bacteria.								
7a(iii)	Anti-oxidant or Free Radical Scavenger	Free Radical Scavengers and anti-oxidants quickly react with any free radical particles going and prevent future propagation steps which would prolong the breakdown of the plastics.								
7b(i)	Water/H₂O	5-hydroxypentanoic acid = $C_5H_{10}O_3$ lactone = $C_5H_8O_2$ Difference = H_2O								
7b(ii)	CH—O H ₂ C CH ₂ O	One less carbon between Carboxyl -COOH group and Hydroxyl group One less carbon in lactone ring i.e. ring has 4 carbons plus 1 oxygen in ring Carbon with hydroxyl -OH group has methyl -CH3 group sticking off it Methyl -CH3 group sticking off C on other side of -O-C=O ester group								
7b(iii)	3-hydroxybutanoic acid	3-hydroxybutanoic acid								
		on C ₃ group main chain functional group								
8a(i)	6	amino amino amino amino amino amino amino acid acid acid acid acid acid acid $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
8a(ii)	London Dispersion Forces	There are three forms of van der Waals' Attraction. London Dispersion forces are found in all substances but are the weakest form of intermolecular attraction. Permanent dipole to permanent dipole attractions are stronger than London Dispersion Forces and Hydrogen Bonding is the strongest form of van der Waals' attraction.								
8b(i)	Answer to include:	1 st Mark: Dissolve gelatin (in small volume of deionised water) 2 nd Mark: Transfer quantitatively/with rinsings/with washings 3 rd Mark: Fill to the mark/line (on volumetric/standard flask)								
8b(ii)	11.0	Concentration (%) 2.0 4.0 6.0 8.0 10.0 Viscosity (units) 1.0 2.0 4.0 7.0 (-) Difference 1.0 2.0 3.0 (4.0) Prediction (units) (-) (-) (-) 11.0								
8c(i)	Enzyme Changes shape or denatured	Enzymes are specifically shaped globular proteins which denature when heated. Denaturing is caused by the 3D structure of the protein in the enzyme changing. This 3D structure is held by various types of bonding e.g. hydrogen bonding. Once the enzyme has changed shape, the substrate molecule no longer fits the enzyme active sire and the enzyme no longer catalyses the reaction.								
8c(ii)	37.88	13.2mg bromelain $\stackrel{\bullet}{\longrightarrow}$ 1g pineapple 500mg bromelain $\stackrel{\bullet}{\longrightarrow}$ 1g x $^{500}/_{13.2}$ = 37.88g								
9a(i)	+220±2	Activation Energy (forward reaction) is measure from: R to Activated Complex = 220 - 0 - +220kJ mol ⁻¹ NB: Activation energy are always endothermic with a positive value.								

©JABchem 2022 13 2020 Higher Marking Scheme

9a(ii)	One Answer from:	Favours the endothermic/ reverse reaction	(Forward) reaction is exothermic	Reverse reaction is endothermic		
9b	Diagram showing:	workable method for removal pass through wa	workable method to collect gas (1mark)			
				syringe		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔH=-75 kJ mol ⁻¹ ΔH=-98 kJ mol ⁻¹ ΔH=-92 kJ mol ⁻¹								
$ C + 2Cl_2 \rightarrow CCl_4 $	ΔH=-98 kJ mol ⁻¹								
3 ×4 2H ₂ + 2Cl ₂ → 4HCl	∆H=-368 kJ mol ⁻¹								
Add ①'+❷+③' CH ₄ + 4Cl ₂ → CCl ₄ + 4HC	C ∆H=-391 kJ mol ⁻¹								
are not found in deionised water would alter the concentration of either ions in the f	The tap water used might contained chloride ions or magnesium ions which vould alter the concentration of either ions in the final solution. Deionised vater or distilled water are free from ions.								
	pettes are the most accurate method of transferring accurate volumes of solutions. leasuring cylinders do not provide an accurate measurement of volume, only approximate olumes.								
E Weigh the filter paper C Filter the precipitate B Weigh the precipitate									
B Wash the precipitate with water to remove a D Dry the precipitate in an oven	any impurities								
Step Step Step Step Step A Weigh the precipitate and the filter paper									
	$MgCl_{2(aq)} + 2AgNO_{3(aq)} \longrightarrow 2AgCl_{(s)} + Mg(NO_3)_{2(aq)}$								
	• •								
1mol 2mol									
1mol 2mol 0.00972mol 0.00972mol									
1mol 2mol 0.00972mol 0.00486mol 0.00972mol mass = no. of mol × gfm = 0.00486 × 95.3 = 0.463g									
1mol 2mol 0.00972mol 0.00972mol									
100 1 mol 2 mol 0.00972 mol 0.00986 mol 0.00986 mol x gfm = 0.00486 x 95.3 = 0.463g 10c 96.0 % purity = $\frac{\text{mass of pure sample}}{\text{mass of impure sample}} \times 100 = \frac{2.40}{2.50}$ 3 mark answer 2 mark answer	03 03 ×100 = 96.0% 1 mark answer								
10c 1mol 0.00972mol 0.009	03 03 ×100 = 96.0%								
10c 1mol 0.00972mol 0.009	1 mark answer I mark answer Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow								
10c 96.0 1mol 0.00486mol 0.00972mol 0.00972mol mass = no. of mol x gfm = 0.00486 x 95.3 = 0.463g 10c 96.0 3 mark answer mass of pure sample x100 = 2.40 2.50 3 mark answer 2 mark answer 3 mark answer 2 mark answer 3 mar	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which the fatty acids. The alkali								
10c 96.0 1mol 0.00486mol 0.00972mol 0.00972mol mass = no. of mol x gfm = 0.00486 x 95.3 = 0.463g 10c 96.0 % purity = mass of pure sample mass of impure sample x 100 = 2.40 / 2.50 /	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which the fatty acids. The alkali								
10c 96.0 10c 96.0 10c 96.0 10c 96.0 11c	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which efatty acids. The alkalinich act as soaps.								
10c 96.0 1mol 2mol 0.00972mol 0.00972mol mass = no. of mol × gfm = 0.00486 × 95.3 = 0.463g 10c 96.0 % purity = mass of pure sample x100 = 2.40 2.50 2.50 mass of impure sample x100 = 2.40 2.50	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which e fatty acids. The alkalinich act as soaps. obic part to molecule ater (hydrophilic)								
10c 96.0 1mol 2mol 0.00972mol 0.00972mol mass = no. of mol × gfm = 0.00486 × 95.3 = 0.463g 10c 96.0 % purity = \frac{mass of pure sample}{mass of impure sample} \times \frac{2.50}{2.50} 3 mark answer 2 mark answ	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which e fatty acids. The alkalinich act as soaps. obic part to molecule ater (hydrophilic)								
10c 96.0 1mol 2mol 0.00972mol 0.00972mol mass = no. of mol × gfm = 0.00486 × 95.3 = 0.463g 10c 96.0 % purity = mass of pure sample ×100 = 2.40 2.50 2.50	1 mark answer 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which e fatty acids. The alkalinich act as soaps. obic part to molecule ater (hydrophilic) es in oil (hydrophobic)								
10c 96.0 10c 96.0 10c 96.0 11c	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which e fatty acids. The alkalinich act as soaps. obic part to molecule rater (hydrophilic) es in oil (hydrophobic)								
10c 96.0 10c 96.0 10c 96.0 10c 96.0 10c 96.0 10c 96.0 10c 96.0 10c 1	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which the fatty acids. The alkalinich act as soaps. obic part to molecule ater (hydrophilic) es in oil (hydrophobic) res repel each other or break oil into micelles. group on a glycerol ail from the edible oil that								
10c 96.0 % purity = \frac{mass of pure sample}{mass of impure sample} \times \frac{2.40}{2.50} 11 Open Question Answer to Include: 12a(ii) Part B Answer to Include: 12a(ii) Part B Answer to Include: 18a(ii) Part B 19a(iii) Part B 19a(iii) Part B 19a(iii) React edible oil Race of the character of the principles involved and the application of the character of the principles involved and the application of the problem. 19a(iii) Part B 19a(iii) React edible oil Race of Edible oil Scan form an ester link with the hydroxyl - OH g(propane-1,2,3-triol). The emulsifier has a hydrophobic tax and the composition of the processing of the character of the character of the principles involved and the application of the principles involved and the application of the problem. 2 mark answer 2 mark answer Demonstrates a reasonable understanding of the chemistry involved making some statement of the principles involved and the application of the principles involved and the application of the problem. Sample of the chemistry bemostrates a reasonable understanding of the chemistry involved making some statement of the chemistry involved making some statement of the principles involved and the application of the principles involved and the application of the principles involved and the application of the problem. Compound A has polar bonds which have permanent of the interaction with water molecules. Compounds B+C had allow these compounds to interact with water. Alkali will hydrolyse fats/oils into glycerol and three will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neutralise the fatty acids to form salts who will then neu	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. dipoles to allow ave ionic charges which efatty acids. The alkalinich act as soaps. obic part to molecule ater (hydrophilic) es in oil (hydrophobic) res repel each other or break oil into micelles. group on a glycerol ail from the edible oil that ps. ame Bonding electrons								

		To ensure all chlorine is used up/to prevent chlorine being released		chea exp	PH is the oper/less bensive actant	To ensure that the bleach cleaner contains sodium hydroxide		Excess NaOH would neutralise any acid added to cleaner		acid	helps b		ss NaOH break up grease	
12c	Answer to include:	1st Mark: Adding acid increases in the number of Ht ions 2nd Mark: Rate of Forward Reaction increases (to reduce concentration of Ht ions by turning them into products)												
12d(i)	OCl ⁻ + 2H ⁺ + 2e ⁻ ↓ Cl ⁻ + H ₂ O	redox oxidation reduction	OCI-	+	2H+ 2H+	+	2I ⁻ 2I ⁻ 2e ⁻	→	I ₂ I ₂	+	Cl ⁻ 2e ⁻ Cl ⁻		+	H₂O H₂O
12d(ii)	1.76×10 ⁻² or 0.0176	no. of mol = I ₂ 1mol 4.41×10 ⁻⁴	volume + mol OCI 1mol 1.41×10 ⁻⁴	× con 2 - +		on = (5 ₂ C ⁴ mol • 2 F	0.0090i) ₃ —	2 Inol	VaI + Cl ⁴mol	+ No	8.82× a2S 12C	610 ⁻⁴ 62C	mol	1120

— OН