

Grade Obtained	A	B	C	D	N/A
2020	40.7%	25.5%	22.1%	7.8%	3.9%
2021	43.4%	19.9%	18.2%	10.4%	8.1%

This marking scheme is for the intended Higher Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason.
Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same. The grades awarded in 2020 and 2021 are in the table above.

2020 Higher Chemistry Marking Scheme							
MC Qu	nswer	Reasoning					
1	A	VA Filtration is the process to separate an insoluble substance from a liquid．$\times B$ istillation is the process where chemicals sue separated due to different boiling points ΨC Evaporation is the process to separate a substance from the solvent it is dissolved in XD Collection over water is the process to collect insoluble gases using a delivery tube					
2	D	The size of atoms decreases across a period e．g．sodium to chlorine due to the increased number of protons／increased nuclear charge．The increased nuclear charge has a greater attraction for the outer shell of electrons and it moves closer to the nucleus．					
3	B	$\boxtimes A \mathrm{CO}_{2}$ is non－polar due to the spatial arrangement of the atoms within the molecule $\square \mathrm{B}$ London dispersion forces are broken as solid CO_{2} is changed into gaseous CO_{2} 区 C No covalent bonds are broken as it is still CO_{2} at the end of the change of state W $\mathrm{D} \mathrm{CO}_{2}$ is non－polar due to the spatial arrangement of atoms and has no permanent dipoles					
4	A	－A Elements with high electronegativities tend to gain electrons and are reduced 区B Elements with high electronegativities tend to reduce so are oxidising agents $\boxtimes C$ Elements with low electronegativities e．g．metals tend to lose electrons 区D Elements with low electronegativities tend to oxidise themselves so are reducing agents					
5	C	$\boxtimes A \times$ must be less viscous as the metal ball is falling through it faster XB Y must have the strongest van der Waals forces as the ball bearing is travelling slower $\square c x$ is less viscous and Y must have the stronger van der Waals forces X $\mathrm{X} \times$ must be less viscous as the metal ball is falling through it faster					
6	C						
7	D	XA 2 －methylpropanoic acid $C_{4} H_{8} O_{2}$ is not an isomer of pentanoic acid $C_{5} H_{100}$ $\square \mathrm{D}$ ethyl propanoate $C_{5} \mathrm{C}_{10} \mathrm{O}_{2}$ is an isomer of pentanoic acid $C_{5} \mathrm{H}_{10} \mathrm{O}_{2}$					
8	B	OH		$\begin{aligned} & 0 \\ & \\|-\mathrm{C}-\mathrm{O} \end{aligned}$			
9							
	B	Alcoho N				－	
		Typeof Alcool	Primary	Secondar	Tertiary	Prinary	
			Carboxylic	Ketone	［No Oxidation］	Carboxylic Acid	
10	C						
11	C	XA ethyl methanoate would hydrolyse and form the salt sodium methanoate（and ethanol）$\mathbb{Q B}$ methyl ethanoate would hydrolyse and form the salt sodium ethanoate（and methanol） $\boxtimes C$ propanoic acid $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ would react to form the salt sodium propanoate $ख \mathrm{D}$ butanoic acid $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ would react to form the salt sodium butanoate					

12	B	囚A proteins are not hydrolysed into amino acids during denaturing $\quad B$ hydrogen bonds are broken in the denaturing step as the protein changes shape $\boxtimes C$ proteins are not hydrolysed into amino acids during denaturing खD water is removed in the condensation reaction to turn amino acids into proteins
13	C	खA fats are more saturated than oils as oils have more $C=C$ double bonds than fats खB fats are more saturated than oils as oils have more $C=C$ double bonds than fats ∇C fats are more saturated than oils and hsve higher melting points than oils खD fats have higher melting points than oil as fats are solid at room temperature
14	B	A antioxidants are easily oxidised themselves so act as electron donors $\nabla \mathrm{B}$ antioxidants are easily oxidised to stop oxidation of food so do not act as oxidising agent $\boxtimes C$ antioxidants are easily oxidised themselves so act as reducing agents XD antioxidants act as free radical scavengers and react with free radicals
15	D	खA Termination Step with free radicals before the arrow only凹B Initiation Step with free radicals after the arrow only区C Termination Step with free radicals before the arrow only VD Propagation Step with free radicals on both sides of the arrow．
16	A	\checkmark A small rise in temperature decreases the time and gives a large increase in reaction rate囚B activation Energy does not change with a change in temperature $\boxtimes C$ Kelvin temperature scale must be used to investigate doubling the temperature खD Increase in temperature is decreasing the time for reaction \therefore increasing the rate
17	D	rate $=\frac{1}{\text { time }}=\frac{1}{5 s}=0.2 \mathrm{~s}^{-1} \quad$ relative rate $=0.20 \mathrm{~s}^{-1}$ gives concentration $=0.96 \mathrm{~mol} \mathrm{l}^{-1}$
18	B	खA high activation energy barrier too high for the reaction to take place at room temp $\boxtimes B$ low activation energy barrier and the reaction more likely to happen at room temp $\boxtimes C$ this enthalpy diagram is endothermic as the products are higher than the reactants区D this enthalpy diagram is endothermic as the products are higher than the reactants
19	C	凹A 3 volumes of gas reactants becomes 2 volumes of gas products \therefore not halving of reactants खB 1 volume of gas reactants becomes 1 volume of gas products \therefore not halving of reactants चC 4 volumes of gas reactants becomes 2 volumes of gas products \therefore halving of reactant vol区D 1 volume of gas reactants becomes 2 volumes of gas products \therefore not halving of reactants
20	D	If 80% Yield produces 0.8 mol of ester product then 100% Yield would be 1.0 mol of ester $\underset{1.0 \mathrm{~mol}}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{1.0 \mathrm{~mol}}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \rightleftharpoons \underset{1.0 \mathrm{~mol}}{\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}}+\underset{1.0 \mathrm{~mol}}{\mathrm{H}_{2} \mathrm{O}}$
21	A	\checkmark A decrease in temperature increases the yield by more forward reaction and decrease in temperature favours the exothermic reaction \therefore forward reaction is exothermic囚B Equilibrium is achieved at $250^{\circ} \mathrm{C}$ and 300 atm but reverse reaction is still happening区 C The $500^{\circ} \mathrm{C}$ line is always below the $250^{\circ} \mathrm{C}$ line so increasing temperature lowers yield खD There is increase in product yield when the pressure increased after 200 atmospheres
22	B	no．of $\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=$ volume \times concentration $=0.05$ litres $\times 0.2 \mathrm{~mol}^{-1}=0.01 \mathrm{~mol}$
23	C	囚A P is closer to base line than $S \therefore P$ must be more polar than S $\boxtimes B Q$ is further from the base line than $P \therefore Q$ must be smaller than P $\nabla C R$ is closer to base line than $P \therefore R$ must be more polar than P DD S is closer to base line than $Q \therefore$ S must be larger than Q
24	A	Sample 1 is ignored as rough titre Sample 3 is ignored as beyond $0.2 \mathrm{~cm}^{3}$ limit for concordance Average $=\frac{20.3+20.4}{2}=20.35 \mathrm{~cm}^{3}$
25	A	Increasing the pressure favours the forward pressure－reducing reaction． The mixture becomes paler as NO_{2} turns into $\mathrm{N}_{2} \mathrm{O}_{4} \therefore \mathrm{NO}_{2}$ is brown． Increasing the temperature makes mixture darker brown（i．e．more NO_{2} ）． The reverse reaction must be endothermic if it is favoured by an increase in temperature． \therefore Forward reaction is exothermic

	C	XA methanol（primary alcohol）oxidises to methanoic acid（carboxylic acid）囚B propanal（aldehyde）oxidises to propanoic acid（carboxylic acid） $\boxtimes C$ butan－2－one（ketone）reduces to become butan－2－ol（secondary alcohol）囚D propan－2－ol（secondary alcohol）oxidises to propanone（ketone）
	B	खA Primary Amine： 1 carbon directly bonded to nitrogen atom \checkmark B Secondary Amine： 2 carbons directly bonded to nitrogen atom区C Tertiary Amine： 3 carbons directly bonded to nitrogen atom खD Primary Amine： 1 carbon directly bonded to nitrogen atom
	0	Formula of Calcium Phosphate $=\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ 1 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains 3 mol of Ca^{2+} ions and 2 mol of $\mathrm{PO}_{4}^{3-\text { ions．}}$
	A	gfm $C H_{4}=16 \mathrm{~g} \therefore$ no．of $\mathrm{mol}=$ mass $/ \mathrm{gfm}=4 / 16=0.25 \mathrm{~mol}$ \quad A gfm He $=4 \mathrm{~g} \quad \therefore$ no．of $\mathrm{mol}=\mathrm{mass} / \mathrm{gfm}=1 / 4 \quad=0.25 \mathrm{~mol}$ 囚B gfm $H_{2}=2 g \quad \therefore$ no．of $\mathrm{mol}=\mathrm{mass} / \mathrm{gfm}=1 / 2=0.5 \mathrm{~mol}$ 区C gfm $N_{2}=28 \mathrm{~g} \therefore$ no．of $\mathrm{mol}=\mathrm{mass} / \mathrm{gfm}=3.5 / 28=0.125 \mathrm{~mol}$ खD gfm Cl $2=71 \mathrm{~g} \quad \therefore$ no．of $\mathrm{mol}=\mathrm{mass} / \mathrm{gfm}=35.5 / 71=0.5 \mathrm{~mol}$
	C	 Only 0.06 mol of nitric acid available but 0.1 mol nitric acid needed to react with all $0.05 \mathrm{~mol}^{\mathrm{MgCO}} 3$ \therefore Nitric acid HNO_{3} is the limiting factor． $0.03 \mathrm{~mol} \quad 0.06 \mathrm{~mol}$ 0.03 mol 0.03 mol 0.03 mol खA 0.03 mol of CO_{2} gas produced 区B 0.03 mol of MgCO_{3} produced $\boxtimes C 0.03 \mathrm{~mol}$ of MgCO_{3} reacted $\therefore 0.02 \mathrm{~mol}$ of MgCO_{3} remaining D nitric acid HNO_{3} is the limiting factor so all 0.06 mol are used up．
	D	$ख A O$ atom in $C=O$ bonds have δ－charges so will not be attracted to each other खB C－H bond is non－polar due to similar electronegativity so no dipole 区C C－H bonds are non－polar due to similar electronegativity so no dipoles $\nabla D C$ in $C=O$ bond has $\delta+$ charge and is attracted to δ－charge on other $C=O$ bond
	B	$\text { atom economy }=\frac{\text { mass of useful products }}{\text { total mass of reactants }} \times 100=\frac{(4 \times 55.8)}{(2 \times 159.6)+(3 \times 12)} \times 100=\frac{223.2}{319.2+36} \times 100=62.8 \%$
	B	$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ $+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $3 \mathrm{CO}_{2}(\mathrm{~g})$ 1 mol +4 mol $4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ 1 vol 5 vol 3 mol $100 \mathrm{~cm}^{3}$ $500 \mathrm{~cm}^{3}$ $300 \mathrm{~cm}^{3}$ negligible volume
	B	Step 1： 60% of $100 \%=\frac{60}{100} \times 100 \%=60 \%$ Step 2： 90% of $60 \%=\frac{90}{100} \times 60 \%=54 \%$
20	C	XA Volume of gas must be reduced as volume of acid is reduced（zinc in excess） खB Initial Rate of reaction must be increased as lumps replaced by powder $\checkmark C$ Initial rate must be greater and final volume of gas must be reduced囚D Initial Rate of reaction must be increased as lumps replaced by powder
21	A	

		$\begin{aligned} \Delta H_{1} & =\Delta H_{2}+\Delta H_{3}+\Delta H_{4} \\ \Delta H_{2} & =\Delta H_{1}-\Delta H_{3}-\Delta H_{4} \\ b & =a-c-d \end{aligned}$
22	D	Q Higher Activation Energy will make a successful collision less likely to happen. X B The higher the kinetic energy of reactants the more like the collision will have sufficient energy to react. $\pm C$ Higher the concentration the higher the likelihood of a successful collision VD Whether a reaction is exothermic or endothermic has no bearing on the reaction rate.
23	C	XA no change in pressure from reactants to products \therefore lowering pressure has no effect XB lowering pressure favours pressure increasing reaction (reverse reaction) $\boxtimes C$ lowering pressure favours pressure increasing reaction (forward reaction) WD lowering pressure favours pressure increasing reaction (reverse reaction)
24	A	\square A Increasing the temperature moves the curve to the right. 囚 $\operatorname{Increasing~the~temperature~moves~the~curve~to~the~right~not~the~left.~}$ $\boxtimes C E_{a}$ does not change when temperature is changed 区D Area under curve should be same as same number of particles.
25	D	

2020 Higher Chemistry Marking Scheme										
Long Qu	Answer	Reasoning								
1a(i)	Increase in atomic number gives increase in electronegativity	As you go across a period, the electronegativity increases as the electrons within a bond are more attracted to the nuclei at either end of the bond. The bonded electrons are closer to each nucleus as size of atoms decrease as you cross a period.								
1a(ii)	They don't form covalent bonds	The noble gases in group 0 are unreactive as they already have a full outer shell. This means noble gases don't need to form bonds to achieve a full outer shell.								
$1 a(i i i)$	One answer from:	Screening effect increases so less attraction for shared electrons Covalent radius increases so less attraction of nucleus for shared electrons								
1 b (i)	2.8 ± 0.05	Problem Solving: Selecting information								
1b(ii)	Cross at ($2.1,1.8$)	Problem Solving: Selecting information								
		$\begin{aligned} & \text { Write don } \\ & \text { and vale } \end{aligned}$	ymbols below		ss-Over arrows ork out formula			chemical formu	Insert cha ion and m require	arges to each multiple ions d brackets
1 b (iii)A	$\left(L i^{+}\right)_{2} S^{2-}$	Li 1			$\mathrm{Li}_{2}^{\mathrm{Li}}$			$i_{2} 5$		${ }_{2} S^{2-}$
1b(iii)B	Due to changes to the data booklet in 2021, the answers to this question no longer come to 1.5	Answer								
		Elements	Carbo		Fluorine		fur	Fluorine	Boron	Oxygen
		Electronegativity	$\xrightarrow{\text { Electronega }}$ =2.6		$\underbrace{=4.0}_{\text {Electronegativity }}$	Electro	2.6	${ }_{\text {Electronegativity }}=4.4$	$\underset{\text { Electronegativity }}{=2.0}$	${ }_{\text {Electronegativity }}^{\text {a }}$
		Difference		1.4			1.4		1.4	
1 c	Polar (covalent)	The covalent bond in hydrogen fluoride is a polar bond due to the electronegativity difference within the bond is 1.8. The polar bond is a permanent dipole and is so polar it takes part in hydrogen bonding between molecules.								
2a(i)	graphite	There are three forms of the element carbon. - Carbon in the form of fullerene is a molecular form with formula C_{60}. - There are two forms of carbon which are covalent network; diamond and graphite.								
2a(ii)	Covalent bond	Diamond is a covalent network so covalent bonds are broken when diamond undergoes sublimation into a gas. Fullerene is a non-polar molecule and London dispersion forces are broken when fullerene undergoes sublimation into a gas.								
2a(iii)	12									
2b	45.8	$\text { atom economy }=\frac{\text { mass of useful products }}{\text { total mass of reactants }} \times 100=\frac{(2 \times 55.8)}{(1 \times 159.6)+(3 \times 28.0)} \times 100=45.8 \%$								
2 c	+250 $\mathrm{kJ} \mathrm{mol}^{-1}$									

		3 mark answer	2 mark answer	1 mark answer
3	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
4a				
4b				
4c(i)				
4c(ii)				
4c(iii)				
4d(i)				
4d(ii)				
4d(iii)A				
4d(iii)B				
4e(i)				
4 e (ii) A				
$4 e(i i) B$				
5a				
5b(i)				
5b(ii)				
$5 c(i)$				
$5 c(i i)$				
6a				
6b(i)				
6b(ii)				
6b(iii)				
6b(iv)A				
6b(iv)B				
$6 c(i)$				
6c(ii)				
7a				
7b				
7c(i)				
7c(ii)				
7d				
7e(i)				
$7 e(i i)$				
8a(i)				
8a(ii)				
8b(i)				
8b(ii)				
8 c (i)A				
8 c (i)B				

9 a (ii)	One Answer from:	Favours the endothermic/ reverse reaction	(Forward) reaction is exothermic	Reverse reaction is endothermic
	Diagram showing:	workable method for removal of HCl but allowing Cl_{2} to pass through water (1mark)		workable method to collect gas (1mark)
$9 b$				

		$\begin{array}{\|c} \hline \begin{array}{c} \text { To ensure all chlorine } \\ \text { is used up/to prevent } \\ \text { chlorine being } \\ \text { released } \end{array} \\ \hline \hline \end{array}$	NaOH is the cheaper/less expensive reactant	To ensure that the bleach cleaner contains sodium hydroxide	Excess NaOH would neutralise any acid added to cleaner	Excess NaOH helps break up oil/grease
12c	Answer to include:	$1^{\text {st }}$ Mark: Adding acid increases in the number of H^{+}ions $2^{\text {nd }}$ Mark: Rate of Forward Reaction increases (to reduce concentration of H^{+}ions by turning them into products)				
12d(i)	$\begin{gathered} \mathrm{OCl}^{-}+2 \mathrm{H}^{+}+2 e^{-} \\ \downarrow \\ \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \end{gathered}$	redox oxidation reduction OCl 		$\begin{array}{r} +\quad 2 \mathrm{I}^{-}- \\ \\ 2 \mathrm{I}^{-}- \\ +\quad 2 e^{-} \\ \hline \end{array}$	$\begin{array}{ll} I_{2} & + \\ I_{2} & + \end{array}$	
12d(ii)	$\begin{gathered} 1.76 \times 10^{-2} \\ \text { or } \\ 0.0176 \end{gathered}$		x concentrat $\begin{array}{r} 2 \mathrm{Na}_{2} \mathrm{~S} \\ 2 \mathrm{~mol} \\ 8.82 \times 10 \\ +2 \mathrm{I}^{-}+ \end{array}$ nol $\text { ration }=\frac{\text { no. c }}{\text { vol }}$	$\begin{aligned} & \text { on }=0.0090 \text { litres } x \\ & \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 21 \end{aligned}$ $\begin{aligned} & { }^{4} \mathrm{~mol} \\ & \frac{\mathrm{Hmol}}{\substack{1 \mathrm{~mol} \\ 4.41 \times 10^{-}}} \mathrm{I}_{2} \\ & \frac{\mathrm{fme}}{4.41 \times 10^{-}} \\ & 0.025 \mathrm{li} \end{aligned}$	$\begin{aligned} & \mathrm{NaI}^{0.098 \mathrm{mall}^{\prime}=8.82} \mathrm{Na} \mathrm{~S} \\ & 2+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{C} \end{aligned}$ ${ }^{-4} \mathrm{~mol}$ $\frac{-4}{\text { tres }}=1.76 \times 10^{-2} \mathrm{mc}$	$10^{-4} \mathrm{~mol}$ O_{6}

$-\mathrm{OH}$

